Newsblog

Novel Metasurfaces Made of Phase-Change Materials

NanoFrazor can be used to locally induce heat-driven phase changes. Dr Ann-Katrin U. Michel and her colleagues from ETH Zürich and RWTH Aachen University are exploring this capability. They proposed a new technique for fabricating near-infrared metasurfaces with feature sizes far below the diffraction limit. Their results were recently published in Advanced Optical Materials.

Phase-change materials such as GeTe, which was the material used in this work, have distinctly different properties depending on whether they are in their crystalline or amorphous state. The heat from the NanoFrazor’s tip drives crystallization of a small volume of the material under the tip. The resulting array of few-nm-sized crystalline dots in amorphous GeTe would significantly change the wavelength at which the resulting metasurface absorbs the light.

In this work, the authors designed a perfect absorber for the near-infrared spectral range. These wavelengths are typically used in telecommunications, so such devices could prove very useful for currently existing technology. A similar approach can also be used for other optics and biosensing applications.

Share:

Related Posts

Maskless lithography provides the extreme overlay accuracy which is central to applications in the sensor field: The production of SQUID devices may involve as many as 18 layers and high-resolution features. The alignment between layers is crucial to the production yield and is completed automatically with the Maskless Aligner technology (impressively demonstrated here by the MLA 150).

Beyond Theory: Engineering Quantum Devices with Precision Lithography

The quantum revolution is shifting from theory to reality, as breakthroughs like Google’s “Quantum Echoes” show. Scaling from small demos to systems with thousands of qubits demands ultra-precise, uniform nanofabrication. This post examines the fabrication challenges and lithographic solutions enabling the leap from lab to large-scale production.

Scroll to Top